Qualifying Exam Problems (Quantum Mechanics) written by Prof. Intae Yu in March, 2016

1. Consider a two-dimensional vector space which is spanned by $|1\rangle$ and $|2\rangle$ basis vectors. There exists a Hermitian operator Ω satisfying the followings:

 $<1|\Omega||1> = 0, <1|\Omega|2> = 1, <2|\Omega|1> = 1, <2|\Omega|2> = 0$

- (1) What is a matrix representation of Ω in the above basis?
- (2) Calculate the eigenvalues and the corresponding eigenvectors of Ω using the result of (1). Also, express the eigenvectors in terms of the basis kets.
- (3) We use the eigenvectors of Ω as the new basis vectors. Calculate the transformation matrix U from the old basis to the new basis. Prove that $U^+\Omega U$ is a diagonal matrix whose diagonal elements are the eigenvalues of Ω .

2. The Hamiltonian operator H is given as follows.

$$\begin{split} \mathrm{H} &= \Delta |\alpha > < \alpha | + \Delta |\alpha > < \alpha' | + \Delta |\alpha' > < \alpha' | + \Delta |\alpha' > < \alpha | \quad \text{where} \quad |\alpha >, \ |\alpha' > \\ \text{are the eigenvectors of a Hermitian operator } A \text{ and } \Delta \text{ is a positive} \\ \text{real number. } \alpha \text{ and } \alpha' \text{ also represent the corresponding eigenvalues} \\ \text{of } A \ (\alpha \neq \alpha'). \end{split}$$

- (1) Write down the matrix representation of H in the eigenbasis of A. Are $|\alpha\rangle$ and $|\alpha'\rangle$ the eigenvectors of the Hamiltonian?
- (2) Calculate the eigenvalues and the corresponding eigenkets of the Hamiltonian H.
- (3) A was measured to be α and then the energy was measured to be some eigenvalue of H. Finally A was measured again. What is the probability of measuring α' this time?

3. A particle of mass *m* moves in one dimension in a potential given by $V(x) = -a\delta(x)$, where $\delta(x)$ is the Dirac delta function. The particle is bound. Find the value x_0 such that the probability of finding the particle with $|x| < x_0$ is exactly 1/2. 4. The quantum states $|\alpha\rangle$ and $|\beta\rangle$ are given as follows.

$$|\alpha> = \frac{1}{\sqrt{2}}|\mathbf{E}_1> + \frac{1}{\sqrt{2}}|\mathbf{E}_2>, \ |\beta> = \frac{1}{\sqrt{2}}|\mathbf{E}_1> - \frac{1}{\sqrt{2}}|\mathbf{E}_2>$$

where $|E_1>$ and $|E_2>$ are the eigenkets of the Hamiltonian operator H such that $H|E_1>=E_1|E_1>$, $H|E_2>=E_2|E_2>$, and $E_1>E_2$.

- (1) At t=0, the initial state ket is given by $|E_1>$. Write down the state vector at t.
- (2) At t=0, the initial state ket is given by $|\alpha >$. Calculate $|\alpha,t >$ and the transition probability $| < \alpha | \alpha, t > |^2$. Estimate the time interval after which the state significantly differs from the initial state.
- 5. A particle with mass m is in the following potential: $V(x)=0 \quad \mbox{for} \quad -L\leq x\leq 0 \\ V(x)=V_0 \quad \mbox{otherwise}$
- (1) Calculate the eigenenergies and the eigenfunction in the position basis when $V_0 = \infty$.
- (2) When V_0 is finite and positive and $E < V_0$, answer the following questions.
 - (a) Plot the ground state wavefunction roughly.
 - (b) Suppose that the width of the potential well is doubled.Explain how the ground state energy will change.
- (3) If $L \rightarrow \infty$ and $E < V_0$, explain the wavefunctions in each region qualitatively.

6. A particle is incident on the step potential from the left side as follows: V(x) = 0 for $x \le 0$, $V(x) = V_0$ for $x \ge 0$

The wavefunction of the incident wave is given by $\psi_{\rm I} = {\rm Ae}^{ikx} ({\rm E} = \frac{\hbar^2 k^2}{2m})$

- (1) When $E>V_0>0$, calculate the probabilities of reflection and transmission as a function of V_{0} .
- (2) When $E < V_0$, calculate the probabilities of reflection and transmission as a function of V_0 .
- (3) When $V_0<0$, explain how the reflected and transmitted waves

behave.

- 7. Consider a particle in one dimension bound to a fixed center by a δ function potential of the form: $V(x) = -V_0 \delta(x)$ (V₀ > 0)
- (1) Write down energy eigenfunctions for x>0 and x<0 respectively.
- (2) Apply boundary conditions at x = 0 and normalize the energy eigenfunction.
- (3) Integrate the Schrodinger equation from -ε to +ε. Using the previous result, calculate the energy eigenvalue.
- 8. Consider a particle with a positive energy E in a δ function potential of the form: $V(x) = D\delta(x)$ ($D \neq 0$)
- Suppose that an incident wave is propagating from x = -∞. Write down energy eigenfunctions for x>0 and x<0, respectively.
- (2) Calculate the transmission probability as a function of E by applying boundary conditions at x=0.

9. The Hamiltonian of a simple harmonic oscillator, the energy eigenstates and the energy eigenvalues are given as follows:

$$\begin{split} H &= \frac{p^2}{2m} + \frac{kx^2}{2} = \hbar\omega \left(a^+ a + \frac{1}{2} \right) = \hbar\omega \left(n + \frac{1}{2} \right) \\ H &|n > = \hbar\omega \left(n + \frac{1}{2} \right) |n > \quad \text{where } n = 0, 1, 2, \dots \end{split}$$

The a and a^+ operators can be written in position basis as follows:

$$a = \frac{1}{\sqrt{2}}(y + \frac{d}{dy}), a^+ = \frac{1}{\sqrt{2}}(y - \frac{d}{dy})$$
 where $y = \sqrt{\frac{m\omega}{\hbar}}x$

- (1) Show that the Hamiltonian is parity-invariant.
- (2) Using a|0>=0, calculate the ground state wavefunction. You do not have to normalize the wavefunction.
- (3) From (1) and (2), calculate parity eigenvalues of $|n\rangle$ state.

10. The Hamiltonian of a simple harmonic oscillator, the energy eigenstates and the energy eigenvalues are given as follows:

$$H = T + V = \frac{p^2}{2m} + \frac{1}{2}kx^2 = \hbar\omega(a^+a + \frac{1}{2}) = \hbar\omega(n + \frac{1}{2})$$

$$H|n>=\hbar\omega(n+\frac{1}{2})|n>$$
 where n=0,1,2,3....

The a and a^+ operators can be written in terms of x and p operators as follows:

$$\mathbf{a} = \sqrt{\frac{m\omega}{2\hbar}} \mathbf{x} + \mathbf{i} \sqrt{\frac{1}{2m\omega\hbar}} \mathbf{p}, \quad \mathbf{a}^+ = \sqrt{\frac{m\omega}{2\hbar}} \mathbf{x} - \mathbf{i} \sqrt{\frac{1}{2m\omega\hbar}} \mathbf{p}$$

- $(1) \ \ Calculate \ < m |x|n>, \ < m |p|n>, \ < m |x^2|n>, \ and \ < m |p^2|n>.$
- (2) Using the results of (1), prove that < T > = < V > (virial theorem).
- (3) Calculate $\Delta x \Delta p$ for the ground state.

11. The expectation value of an observable A in the state ψ is defined as follows

$$< A > = \int dx \psi^* A \psi.$$

(1) Assume that A does not vary with time. Show that the time variation of $\langle A \rangle$ is given by

$$\frac{d}{dt} < A > = \frac{1}{i\hbar} < [A,H] > .$$

(2) Consider an one-dimensional motion of a particle of mass m in a potential V(x) represented by the state wave function $\psi(x,t)$. Prove that the time variation of the expectation values of position and momentum are given by

$$\frac{d}{dt} < x > = /m$$
, and $\frac{d}{dt} = - < \frac{dV}{dx} >$.

(3) Explain the physical significance of these results.

12. Consider two uncoupled oscillators. The following creation and destruction operators can be defined respectively:

$$\begin{split} N_1 &= a_1^+ a_1, \quad [a_1, a_1^+] = 1, \quad [N_1, a_1^+] = a_1^+, \quad [N_1, a_1] = -a_1 \\ N_2 &= a_2^+ a_2, \quad [a_2, a_2^+] = 1, \quad [N_2, a_2^+] = a_2^+, \quad [N_2, a_2] = -a_2 \\ \end{split}$$
 We assume that any pair of operators from different oscillators

commute. We can obtain simultaneous eigenket of $N_{\scriptscriptstyle +}$ and $N_{\scriptscriptstyle -}$ as

follows:
$$|n_1, n_2 > = \frac{(a_1^+)^{n_1} (a_2^+)^{n_2}}{\sqrt{n_1! n_2!}} |0, 0 >$$

If we define the following operators,

$$J_{+} \equiv \hbar a_{1}^{+} \mathbf{a}_{2}, \quad \mathbf{J}_{-} \equiv \hbar \mathbf{a}_{2}^{+} \mathbf{a}_{1}, \quad \mathbf{J}_{z} = \frac{\hbar}{2} (\mathbf{N}_{1} - \mathbf{N}_{2})$$

- (1) Prove that $[J_z, J_{\pm}] = \pm \hbar J_{\pm}, \ [J_+, J_-] = \pm 2\hbar J_z.$
- (2) Prove that $J^2 \equiv J_z^2 + \frac{1}{2}(J_+J_- + J_-J_+) = (\frac{\hbar^2}{2})N(\frac{N}{2}+1)$ where $N \equiv N_1 + N_2$.
- (3) From (1) and (2), J operators satisfy the same relations as angular momentum operators. What are the physical interpretations?
- 13. Particles are subjected to an infinite potential well. $V(x) = 0 \quad \mbox{for} \quad 0 \leq x \leq L$

 $V(x) = \infty$ otherwise

The energy eigenfunctions and energy eigenvalues of each particle are given as follows:

$$\psi_{n} = \sqrt{\frac{2}{L}} \sin(\frac{n\pi x}{L}), \quad n = 1, 2, 3, ..., \quad E_{n} = \frac{n^{2}\pi^{2}\hbar^{2}}{2mL^{2}}$$

- (1) Consider a system consisting of three electrons.
 - (a). What is the ground state energy of the system?
 - (b). If the energy of the system is measured to be $7\pi^2\hbar^2/\text{mL}^2$, write down the wavefunction of the system.
- (2) Consider a system consisting of three pions. Pions are bosons with spin 0.
 - (a). What is the ground state energy of the system?
 - (b). If the energy of the system is measured to be $7\pi^2\hbar^2/mL^2$, write down the wavefunction of the system.
- (3) Consider a system consisting of two electrons and a proton.
 - (a). What is the ground state energy of the system?
 - (b). If the energy of the system is measured to be $7\pi^2\hbar^2/\text{mL}^2$, write down the wavefunction of the system.

In this problem, the interactions between particles are neglected.

14. N identical non-interacting particles are subjected to a one dimensional simple harmonic potential.

$$H = \frac{p^2}{2m} + \frac{1}{2}kx^2$$

- What is the ground state energy of the system if they are spin 1/2 particles? There are two independent spin states (spin-up and spin-down) for each energy eigenstate.
- (2) What is the ground state energy of the system if they are spin 0 particles?
- 15. The ground state wave function of a hydrogen atom reads:

$$\psi_{100}(\vec{r}) = \frac{1}{\sqrt{\pi a_0^3}} \exp(-r/a_0).$$

and its energy is given by $E_0 = -\frac{e_0^2}{2a_0}$, where a_0 is the Bohr radius. Compute the probability that the electron in a ground state of a hydrogen atom will be found at a distance from the nucleus greater than its energy would permit on the classical theory. (Coulomb energy is given by $V(r) = -\frac{e_0^2}{r}$.)

16. The Hamiltonian of a particle is given by $H = \frac{p^2}{2m} + V(r)$

- (1) Prove that the Hamiltonian is parity-invariant.
- (2) Prove that the Hamiltonian is rotationally invariant.
- (3) From the symmetries of (1) and (2), write down the corresponding conserved quantities and discuss the physical implications.